University of Jordan Faculty of Pharmacy Department of Pharmaceutics and Pharmaceutical Technology Second Semester

Course Title: Advanced Physical Pharmacy Prerequisite(s): First University degree in Pharmacy

Teaching Methods:

- 1. Lectures
- 2. Assignments, reports and Projects
- 3. Case studies

Tests and Evaluations:

- 1) Exams: 80%
- 2) **Projects and Assignments:** 20%

To be presented in the presence of the lecturer, the students.

Course Content and Schedule:

The course is 3 credit hours, each lecture is 1.5 hour.

Lecture 1	Partial differentiation
Lecture 2	Energy, heat and work.
Lecture 3	The 1 st law of thermodynamics, isothermal, adiabatic and
	reversible processes.
Lecture 4	Concepts of work, enthalpy, heat capacity and heats of
	reactions.
Lecture 5	The 2 nd law of thermodynamics, entropy and disorder.
Lecture 6	The 3 rd law of thermodynamics and free energy.
Lecture 7	Fugacity, activity, chemical potential and other partial
	molar quantities
Lecture 8	Discussion of a related published research article.
Lecture 9	Discussion of a related published research article.
Lecture 10	Types of surfactants and surface activity concept.
Lecture 11	Phase behavior and different types of phase diagrams of
	the surfactants systems.
Lecture 12	Micellization, factors affecting CMC, solubilization.
Lecture 13	Discussion of a related published research article.
Lecture 14	Mid Term Exam.
Lecture 15	Surface Activity.
	Adsorption at solid surface and types of adsorption
	isotherms.
Lecture 16	Application of the adsorption in the determination of the
	solid particle dimensions, problem solving.
Lecture 17	Adsorption at the liquid surface. The surface excess and

	the surface pressure.
Lecture 18	Discussion of a related published research article.
Lecture 19	Colloidal stability, zeta and surface potentials, gold
	number, and the coagulation concentration
Lecture 20	Classical and extended DLVO theory.
Lecture 21	Discussion of a related published research article.
Lecture 22	Discussion of a related published research article.
Lecture 23	The concept of the rheology. The relation between applied
	force and response in liquids, solids and semisolids,
	examples of the flow behavior, units of viscosity.
Lecture 24	the different types of the flow, the concept of thixotropy
	and other complex flow types.
Lecture 25	The concept of the viscoelasticity, the different mechanical
	models used to describe the viscoelastic behavior of the
	substances.
Lecture 26	Viscosity measurements and different modes of the
	rheometer operation.
Lecture 27	The complex viscosity, the storage and loss moduli.
Lecture 28	Discussion of a related published research article. (the
	creep test)
Lecture 29	Discussion of a related published research article.
	(suspension stability through the zeta potential and
	complex viscosity data).
Lecture 30	Discussion of a related published research article. (the
	storage and loss modulus of polymers)

References:

- 1. Published articles related to the discussed topics.
- 2. Surfactant Systems, D. attwood and A.T.Florence. 1983, Chapman and Hall.
- 3. Physical Pharmacy, A. Martin, P. Bustamante and A.H.C. Chun, 4th Edition, 1993, Lea and Febiger.
- 4. Thermodynamics of Pharmaceutical Systems, Kenneth A. Connors, 2002, Wiley International.
- 5. Physico-Chemical Principles in Pharmacy, A.T Florence and D. Attwood, 1985, McMillan Publishing, London.
- 6. Pharmaceutics: The Science of Dosage Form Design, Ed. M.E. Aulton, 1988, ELBS, London.
- Bently's Textbook of Pharmaceutics, E. A. Rawlins, 8th Edition, 1984, ELBS, London.
- 8. Pharmaceutical Dosage Forms-Disperse Systems, Volumes 1&2. Ed. Herbert A. Lieberman, Martin M. Rieger and Gilbert S. Banker. 1988. Marcel Dekker, INC. New York and Basel.